Stepsize Control for Mean-Square Numerical Methods for Stochastic Differential Equations with Small Noise
نویسندگان
چکیده
Abstract. A strategy for controlling the stepsize in the numerical integration of stochastic differential equations (SDEs) is presented. It is based on estimating the p-th mean of local errors. The strategy leads to stepsize sequences that are identical for all computed paths. For the family of Euler schemes for SDEs with small noise we derive computable estimates for the dominating term of the p-th mean of local errors and show that the strategy becomes efficient for reasonable stepsizes. Numerical experience is reported for test examples including scalar SDEs and a stochastic circuit model.
منابع مشابه
Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملMultistep methods for SDEs and their application to problems with small noise
In this article the numerical approximation of solutions of Itô stochastic differential equations is considered, in particular for equations with a small parameter 2 in the noise coefficient. We construct stochastic linear multi-step methods and develop the fundamental numerical analysis concerning their mean-square consistency, numerical stability in the mean-square sense and mean-square conve...
متن کاملMean-Square and Asymptotic Stability of the Stochastic Theta Method
Stability analysis of numerical methods for ordinary differential equations (ODEs) is motivated by the question “for what choices of stepsize does the numerical method reproduce the characteristics of the test equation?” We study a linear test equation with a multiplicative noise term, and consider mean-square and asymptotic stability of a stochastic version of the theta method. We extend some ...
متن کاملA Variable Stepsize Implementation for Stochastic Differential Equations
Stochastic differential equations (SDEs) arise from physical systems where the parameters describing the system can only be estimated or are subject to noise. Much work has been done recently on developing higher order Runge–Kutta methods for solving SDEs numerically. Fixed stepsize implementations of numerical methods have limitations when, for example, the SDE being solved is stiff as this fo...
متن کاملStabilized Numerical Methods for Stochastic Differential Equations driven by Diffusion and Jump-Diffusion Processes
Stochastic models that account for sudden, unforeseeable events play a crucial role in many different fields such as finance, economics, biology, chemistry, physics and so on. That kind of stochastic problems can be modeled by stochastic differential equations driven by jumpdiffusion processes. In addition, there are situations, where a stochastic model is based on stochastic differential equat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 28 شماره
صفحات -
تاریخ انتشار 2006